Метацентры и метацентрические радиусы. Метацентрическая высота - критерий остойчивости судна: формула Что такое метацентр

Вычисление основных метапараметров
инвариантно к различным судам

Метацентрическая высота - критерий остойчивости судна. Представляет собой возвышение метацентра над центром тяжести плавающего тела. Чем больше этот параметр, тем выше начальная остойчивость судна. При приобретении отрицательного значения метацентрической высоты судно утрачивает способность плавать без крена. Ответить на вопрос «перевернется ли судно, имеющее отрицательную метацентрическую высоту» не представляется возможным, так как метацентрическая теория остойчивости верна лишь при наклонениях судна, не превышающих 10 градусов.

Тем не менее, в Правилах классификационных обществ, осуществляющих надзор за технической эксплуатацией судов (Российский Речной Регистр, Российский Морской Регистр Судоходства и др.), запрещена эксплуатация судов, имеющих метацентрическую высоту менее 0,2 м. Характерным примером тела, имеющего нулевую метацентрическую высоту, является симметричный плавающий бочонок. При нахождении в спокойной воде такой бочонок будет совершать вращение вдоль продольной оси под воздействием любых внешних сил (например ветра).

Силы поддержания D равны (водоизмещению) - весу судна и груза

Силы тяжести судна P равны весу судна и груза (водоизмещению), приложенномув приведенной точке тяжести судна.

Вследствие изменения формы погруженной в воду части корпуса распределение гидростатических сил давления, действующих на эту часть
корпуса, также изменится. Центр величины судна переместится в сторонукрена и перейдет из точки С в точку С 1 .Сила поддержания D", оставаясь неизменной, будет направлена вертикальновверх перпендикулярно новой действующей ватерлинии, а ее линия действия пересечет ДП в первоначальном поперечном метацентре m . Положение центра тяжести судна остается неизменным, а сила веса Р будет перпендикулярна новой ватерлинии В 1 Л 1 . Таким образом, силы Р и D", параллельные друг другу, не лежат на одной вертикали и, следовательно, образуют пару сил с плечом GK, где точка К - основание перпендикуляра, опущенного из точки G на направление действия силы поддержания. Пара сил, образованная весом судна и силой поддержания, стремящаясявозвратить судно в первоначальное положение равновесия, называетсявосстанавливающей парой, а момент этой пары - восстанавливающим моментом M θ .


М θ = D" × G К (1).


Плечо GK называют плечом воc станавливающего момента или плечом статического момента и обозначают буквой l ст . Угол между линией действия силы поддержания и ДП равен углу крена θ , поскольку стороны этого угла перпендикулярны к ватерлиниям ВЛ и В 1 Л 1 . С другой стороны, отрезок mG является поперечной метацентрическойвысотой, которая обозначается буквой h . Тогда из прямоугольного треугольника mGK следует:
GK = mG × sin θ = h × sin θ . (2)

Подставив равентсво (2) в (1), находим выражение для восстанавливающего момента M θ при малых углах крена:

М θ = D" × h × sin (3)

При малых углах крена вместо sin θ в формулу (3) можно подставить θ в радианах. Тогда выражение (3) примет вид:

М θ = D" × h × θ (4)

Формулы (3) и (4) являются метацентрическими формулами поперечной остойчивости. Как видно из метацентрической формулы поперечной остойчивости,
восстанавливающий момент пропорционален поперечной метацентрическойвысоте h . Каталось бы, следует стремиться к тому, чтобы судно имело возможно большее h . Однако чрезмерное увеличение h неблагоприятносказывается на характере качки судна - она становится весьмастремительной, что вызывает большие моменты инерции. Это отрицательносказывается на состоянии экипажа, а главное при такой качке большевероятность смещения груза и потеря остойчивости, чем при плавной качке.

ИЗМЕНЕНИЕ ОСТОЙЧИВОСТИ СУДНА ПРИ ПЕРЕМЕЩЕНИИ ГРУЗА ПО ВЕРТИКАЛИ



Допустим, что на судне, сидящем на ровный киль и находящемся в равновесии, перемещен по вертикали груз Р на расстояние l z . Поскольку водоизмещение судна от перемещения груза не меняется, первое условие равновесия будет соблюдено (судно сохранит свою осадку). Согласно известной теореме теоретической механики, Ц.Т. судна переместится в точку G 1 , находящуюся на одной вертикали с прежним положением Ц.Т. судна G. Сама вертикаль пройдет, как и прежде, через Ц.В. судна С. Тем самым будет соблюдено второе условие равновесия, следовательно, при вертикальном перемещении груза судно не изменитсвоего положения равновесия (не появится ни крена ни дифферента). Рассмотрим теперь ичменение начальной поперечной остойчивости. Ввидутого, что форма погруженного в воду корпуса судна и форма площадиватерлинии не изменялись, положение Ц.В. и поперечного метацентра (т. m ) при перемещении груза по вертикали остается неизменным. Перемещаетсятолько Ц.Т. судна из точки G в точку G 1 . Отрезок GG 1 может быть найден с помощью выражения:

GG 1 = (Р × l z ) / D


Если до перемещения груза поперечная метацентрическая высота была h , то после его перемещения она изменится на величину GG 1 . В нашем случае изменение поперечной метацентрической высоты Δh = GG 1 имеет отрицательный знак, т.к. перемещение Ц.Т. судна по направлению кпоперечному метацентру, положение которого, как мы установили, остаетсянеизменным, уменьшает метацентрическую высоту. Следовательно, новое значение поперечной метацентрической высоты будет:
h 1 = h - (Р × l z ) / D (1)

Очевидно, что в случае перемещения груза вниз перед вторым членом правой части уравнения новой метацентрической высоты h 1 , должен быть поставлен знак плюс (+). Из выражения (1) следует, что уменьшение остойчивости суднапропорционально произведению массы груза на его перемещение по высоте.Кроме того, при прочих равных условиях, изменение поперечнойостойчивости будет относительно меньше, у судна с большимводоизмещением, чем у судна с малой силой поддержания D . Поэтому на больших судахперемещение относительно больших грузов безопаснее, чем на малых судах. Может оказаться, что значение GG 1 перемещения вверх Ц.Т. судна будет больше самой величиныh . Тогда начальная поперечнаяостойчивость станет отрицательной, т.е. судно не сможет оставаться впрямом положении.

ОПРЕДЕЛЕНИЕ МЕТАЦЕНТРИЧЕСКОЙ ВЫСОТЫ СУДНА по формуле

h = (P × l y )/(D × tgθ ) = М КР /(D × tgθ )

Затем можно вычислить и аппликату ZG Ц.Т., предварительно определив величину Zm (ось z по направлению ОМ).

Z G = Z m – h

Найдена ошибка для групп (так и не исправили).

Метапараметры для одной поверхности - лодки ФК К-9

(МК: “Мет_высота по формуле.vbs » – без использования метода Met a All )

Схема решения задачи. Также задаем судно по варианту, удаляем из структурылишние объекты, оставляя только Поли-поверхность , делаем ее активнойи обращаемся к МК Мета все

Например для ship 1 получимсначала вывод на экран:

Затем получим изображение самого судно сдифферентом. Метацентр – точка М с. Мета-высота – расстояние М с – G0. Чтобы проверить правильно ли вычислено плечо – расстояние по горизонтали от G0 догоризонтальной прямой Pc – Mc , можно воспользоватьсядиалогом задания окружности.

Видим, что все соответствует

Рс – центр поддерживающей силы смоченнойповерхности (ниже линии погружения).

Чтобыпривести в равновесие судно, надо,чтобы Pc-Мс лежали на одной вертикали. В этот момент получим крен равновесия судна

Метапараметры для одной поверхности - лодки ФК К-9

(МК: “Мет_высота по формуле.vbs » – без использования метода Met a All )

Вращая сферу (справа), расположение центра поддерживающей силы С1 ос тается в том же месте.

Вся сфера:

Центр = (-3.55013e-017, 2.28505e-017, 1.20472e-016)

В группе нет тел

Площадь = 12.5034

Подводная часть (как тело):

Центр = (-0.00942139, -0.695146, -0.000790239)

Объём = 0.573678

В системе Вектор реализованы расчеты для групп. Камнем преткновения были расчеты объемов и ЦТ, в случае преобразования групп. Сейчас эта проблема решена. Одно условие, что поверхность (одна или несколько) должны быть расположены в группе.

Объем групп


Центр = (-0.449362, 0.243291, 0.00259662)

Объём = 14.1873

Расчет ЦТ группы объектов и поддерживающей силы выполняет МК «Объем под водой».


В это случае важно, чтобы поддерживающая сила находилась на одной вертикали с силой веса. В данном случае дифферент будет на корму. Вращая группу против часовой стрелки можно добиться равновесия.

В этом случае группа в равновесие, но с дифферентом на корму в 2.5 градуса

17-я макрокоманда «Мета пример» при заданным дополнительной грузе его ЦТ С2 рассчитывает общий центр тяжести ЦТо и центр силы поддержания С1.

Если C1 и ЦТо , находятся на одной вертикали, значит система уравновешена .

Приведенные три макрокомандыпроверены на всех объектах, которые можно взять в разделе «Готовые макрокоманды».

Чтобы уравновесить систему, надо чтобы С2 находилась под ЦТо . В МК «Мета пример» надо изменить угол поворота системы групп не на -27 градусов, а например -7.


Два контейнера находятся в равновесии
– в таком положении будут находится на плаву


Увеличено: Видим, что С1 по вертикали почти совпадает с ЦТо

Метацентр (от греч. μετα - через и лат. centrum - средоточие) - центр кривизны траектории, по которой перемещается центр величины в процессе наклонения судна. При малых наклонениях судна (примерно, до 10 градусов) метацентр можно считать неподвижным, при больших наклонениях метацентр начинает смещаться. Возвышение метацентра над центром тяжести судна называется метацентрической высотой.

В теории корабля различают два метацентра:

при наклонении судна в поперечной плоскости (крен), метацентр является поперечным, или малым.

при наклонении судна в продольной плоскости (дифферент) - продольным, или большим.

На практике судно испытывает наклонения в обеих плоскостях, и если определить для этого случая метацентр, он будет лежать выше поперечного, но ниже продольного. С этой точки зрения метацентрические высоты, рассматриваемые в теории, являются предельными.

Центр тяжести - точка приложения силы веса судна. Для определения его положения есть два пути: расчетный - составление т. наз. продольной и вертикальной нагрузки судна, производимое по его чертежам; второй - экспериментальное определение положения Ц. Т. С. на плаву.

Центр величины - центр масс погруженного объема тела (подводной части корпуса корабля (судна). Одновременно является точкой приложения всех гидростатических сил, выталкивающих плавающее тело на поверхность. Высота расположения центра величины относительно киля, зависящая от формы объема погруженной части, определяет остойчивость корабля (судна). Например, центр величины у острокильного судна находится выше, чем у судна с плоским дном при прочих равных размерах, этим и объясняется большая остойчивость острокильных судов. При возникновении дифферентов центр величины меняет свое положение.

Поперечное наклонение плавающего судна.

Метацентр обозначен M.

Центр величины обозначен C

Центр тяжести обозначен G

Меры начальной остойчивости

Для практики недостаточно простой качественной оценки - остойчиво судно или неостойчиво, так как степень остойчивости может быть различной, в зависимости от размеров, нагрузки и величины наклонения. Величины, дающие возможность количественно оценить начальную остойчивость, называются мерами начальной остойчивости.

Использование восстанавливающего момента в качестве меры начальной остойчивости неудобно, так как он зависит от угла наклонения. При бесконечно малых углах крена восстанавливающий момент mθ также стремится к нулю и по нему невозможно оценить остойчивость.

Благодаря своему простому геометрическому смыслу метацентрическая высота наиболее часто используется в качестве меры начальной остойчивости, хотя следует иметь в виду, что коэффициент остойчивости дает наиболее полную оценку этого мореходного качества.

Внешними признаками отрицательной начальной остойчивости корабля являются:

Плавание корабля с креном при отсутствии кренящих моментов;

Стремление корабля перевалиться на противоположный борт при спрямлении;

Переваливание с борта на борт при циркуляции, при этом крен остается и при выходе корабля на прямой курс;

Большое количество воды в трюмах, на платформах и палубах.

Последнее является не только признаком, но и основной причиной появления отрицательной начальной остойчивости. При наличии отрицательной начальной остойчивости спрямлять судно затоплением бортовых отсеков нельзя, так как при этом судно может опрокинуться на противоположный борт из-за совместного действия спрямляющего момента и момента от перетекания воды в сторону спрямления. Поэтому прежде всего необходимо восстановить начальную остойчивость либо удалением воды с палуб, либо спуском ее в нижние помещения.

Наличие на судне незакрепленных и подвешенных грузов также уменьшает его остойчивость. Эти грузы при наклонениях судна перемещаются в сторону наклонения и увеличивают кренящий момент.

Особенно резко снижается остойчивость корабля при входе в воду бортовой кромки верхней водонепроницаемой палубы.

На рис. 10 изображена диаг­рамма статической остойчивости судна, имеющего в прямом поло­жении отрицательную остойчи­вость. В этом случае положениям неустойчивого равновесия судна будут отвечать не только точки заката диаграммы В и В", но и начало координат О. Положениям устойчивого равновесия будут соответствовать две точки - С и С" . Таким образом, судно с отрицательной начальной остойчивостью не может плавать в пря­мом

положении; оно будет иметь крен θ 1 на правый борт или равный ему крен на левый борт в зависимости от случайных внешних причин (ветра, волнения, перекладки руля и т. д.). Однако видно, что наличие отрицательной начальной остойчивости еще не может служить основанием для заключения о том, что судно вообще неостойчиво и должно опрокинуться. Судно опро­кидывается только в том случае, когда его диаграмма остойчивости примет вид, показанный на рис. 10 пунктиром, и будет пере­секать ось абсцисс только в одной точке - нулевой.

Для сохранения надлежащей остойчивости судна необходимо:

Все грузы располагать по возможности на штатных местах и обязательно закреплять их по-походному;

Жидкие грузы принимать и расходовать в соответствии с инструкцией и с таким расчетом, чтобы не допускать образования больших свободных поверхностей;

Не допускать перетекания жидких грузов из цистерн одного борта в цистерны другого борта;

Не допускать скопления воды в трюмах;

Немедленно удалять воду из поврежденных отсеков после заделки пробоины;

Скалывать и удалять лед за борт при обмерзании палубы, рангоута и такелажа;

Не допускать касания грунта при стоянке корабля у стенки и следить за швартовыми;

Выяснять причины появления крена и дифферента и устранять их;

Принимать все меры по удержанию крена до входа в воду верхней палубы.

Методы расчета и построение диаграммы статической остойчивости. Требование Регистра Судоходства к параметрам диаграммы.

Диаграмма статической остойчивости представляет собой кривую, выражающую зависимость плеч статической остойчивости от угла крена судна. Построение выполняют в прямоугольной системе координат: на оси абсцисс откладывают углы крена, а по оси ординат - плечи статической остойчивости. В точках на оси абсцисс, соответствующих конкретным углам крена, восстанавливают перпендикуляры и на них откладывают отрезки плеч статической остойчивости. Полученные точки соединяют плавной кривой, которая называется диаграммой статической остойчивости. Диаграмма статической остойчивости имеет вид кривой с ярко выраженным максимумом.

На ней можно отметить три точки, характерные для неповрежденного судна, обладающего положительной остойчивостью: точку О (начало координат), определяющую положение устойчивого равновесия; точку А, где плечо статической остойчивости и восстанавливающий момент имеют максимальные значения; точку В, определяющую так называемый угол заката диаграммы.

Равновесие накренившегося судна наступает при равенстве кренящего и восстанавливающего моментов. Чтобы воспользоваться диаграммой статической остойчивости для определения угла крена, возникающего под действием заданного кренящего момента МКР, необходимо найти плечо кренящего момента l КР = МКР / D" . Условие равновесия судна можно написать и в таком виде: l КР = lθ. Плечо l КР откладывают в соответствующем масштабе на оси ординат диаграммы и проводят горизонтальную линию до пересечения с кривой. В точке пересечения восстанавливающий момент равен кренящему, и, следовательно, судно находится в равновесии в наклоненном положении. Точка пересечения перпендикуляра, опущенного из точки С, с горизонтальной осью диаграммы определяет угол крена.

Основной характеристикой остойчивости является восстанавливающий момент ,который должен быть достаточным для того, чтобы судно противостояло статическому или динамическому (внезапному) действию кренящих и дифферентующих моментов, возникающих от смещения грузов, под воздействием ветра,волнения и по другим причинам.

Кренящий (дифферентующий) и восстанавливающий моменты действуют в противоположных направлениях и при равновесном положении судна равны.

Различают поперечную остойчивость , соответствующую наклонению судна в поперечной плоскости (крен судна), и продольную остойчивость (дифферент судна).

Продольная остойчивость морских судов заведомо обеспечена и ее нарушение практически невозможно, в то время как размещение и перемещение грузов приводит к изменениям поперечной остойчивости.

При наклонении судна его центр величины (ЦВ) будет перемещаться по некоторой кривой, называемой траекторией ЦВ. При малом наклонении судна (не более 12°) допускают, что траектория ЦВ совпадает с плоской кривой, которую можно считать дугой радиуса r с центром в точке m.

Радиус r называют поперечным метацентрическим радиусом судна , а его центр m - начальным метацентром судна .

Метацентр - центр кривизны траектории, по которой перемещается центр величины С в процессе наклонения судна. Если наклонение происходит в поперечной плоскости (крен), метацентр называют поперечным, или малым, при наклонении в продольной плоскости (дифферент) - продольным, или большим.

Соответственно различают поперечный (малый) r и продольный (большой) R метацентрические радиусы, представляющие радиусы кривизны траектории С при крене и дифференте.

Расстояние между начальным метацентром т и центром тяжести судна G называют начальной метацентрической высотой (или просто метацентрической высотой ) и обозначают буквой h. Начальная метацентрическая высота является измерителем остойчивости судна.

h = zc + r - zg; h = zm ~ zc; h = r - a,

где а - возвышение центра тяжести (ЦТ) над ЦВ.

Метацентрическая высота (м.в.) - расстояние между метацентром и центром тяжести судна. М.в. является мерой начальной остойчивости судна, определяющей восстанавливающие моменты при малых углах крена или дифферента.
При возрастании м.в. остойчивость судна повышается. Для положительной остойчивости суд- на необходимо, чтобы метацентр находился выше ЦТ судна. Если м.в. отрицательна, т.е. метацентр располагается ниже ЦТ судна, силы, действующие на судно, образуют не восстанавливающий, а кренящий момент, и судно плавает с начальным креном (отрицательная остойчивость), что не допускается.

OG – возвышение центра тяжести над килем; OM – возвышение метацентра над килем;

GM - метацентрическая высота; CM – метацентрический радиус;

m – метацентр; G – центр тяжести; С – центр величины

Возможны три случая расположения метацентра m относительно центра тяжести судна G:

метацентр m расположен выше ЦТ судна G (h > 0). При малом наклонении силы тяжести и силы плавучести создают пару сил, момент которой стремится вернуть судно в первоначальное равновесное положение;

ЦТ судна G расположен выше метацентра m (h < 0). В этом случае момент пары сил веса и плавучести будет стремиться увеличить крен судна, что ведет к его опрокидыванию;

ЦТ судна G и метацентр m совпадают (h = 0). Судно будет вести себя неустойчиво, так как отсутствует плечо пары сил.

Физический смысл метацентра заключается в том, что эта точка служит пределом, до которого можно поднимать центр тяжести судна, не лишая судно положительной начальной остойчивости.

Судна его продольная остойчивость значительно выше поперечной, поэтому для безопасности плавания наиболее важно обеспечить надлежащую поперечную остойчивость.

  • В зависимости от величины наклонения различают остойчивость на малых углах наклонения (начальную остойчивость ) и остойчивость на больших углах наклонения.
  • В зависимости от характера действующих сил различают статическую и динамическую остойчивость.
Статическая остойчивость - рассматривается при действии статических сил, то есть приложенная сила не изменяется по величине. Динамическая остойчивость - рассматривается при действии изменяющихся (т.е. динамических) сил, например ветра, волнения моря, подвижки груза и т.п.

Начальная поперечная остойчивость

Начальная поперечная остойчивость. Система сил, действующих на судно

При крене остойчивость рассматривается как начальная при углах до 10-15°. В этих пределах восстанавливающее усилие пропорционально углу крена и может быть определено при помощи простых линейных зависимостей.

При этом делается допущение, что отклонения от положения равновесия вызываются внешними силами, которые не изменяют ни вес судна, ни положение его центра тяжести (ЦТ). Тогда погруженный объем не изменяется но величине, но изменяется по форме. Равнообъемным наклонениям соответствуют равнообъемные ватерлинии , отсекающие равные по величине погруженные объемы корпуса. Линия пересечения плоскостей ватерлиний называется осью наклонения, которая при равнообъемных наклонениях проходит через центр тяжести площади ватерлинии. При поперечных наклонениях она лежит в диаметральной плоскости.

Свободные поверхности

Все рассмотренные выше случаи предполагают, что центр тяжести судна неподвижен, то есть нет грузов, которые перемещаются при наклонении. Но когда такие грузы есть, их влияние на остойчивость значительно больше остальных.

Типичным случаем являются жидкие грузы (топливо, масло, балластная и котельная вода) в цистернах, заполненных частично, то есть имеющих свободные поверхности . Такие грузы способны переливаться при наклонениях. Если жидкий груз заполняет цистерну полностью, он эквивалентен твердому закрепленному грузу.

Влияние свободной поверхности на остойчивость

Если жидкость заполняет цистерну не полностью, т.е. имеет свободную поверхность, занимающую всегда горизонтальное положение, то при наклонении судна на угол θ жидкость переливается в сторону наклонения. Свободная поверхность примет такой же угол относительно КВЛ.

Уровни жидкого груза отсекают равные по величине объёмы цистерн, т.е. они подобны равнообъёмным ватерлиниям. Поэтому момент, вызываемый переливанием жидкого груза при крене δm θ , можно представить аналогично моменту остойчивости формы m ф, только δm θ противоположно m ф по знаку:

δm θ = - γ ж i x θ,

где i x - момент инерции площади свободной поверхности жидкого груза относительно продольной оси, проходящей через центр тяжести этой площади, γ ж - удельный вес жидкого груза

Тогда восстанавливающий момент при наличии жидкого груза со свободной поверхностью:

m θ1 = m θ + δm θ = Phθ − γ ж i x θ = P(h − γ ж i x /γV)θ = Ph 1 θ,

где h - поперечная метацентрическая высота в отсутствие переливания, h 1 = h − γ ж i x /γV - фактическая поперечная метацентрическая высота.

Влияние переливающегося груза дает поправку к поперечной метацентрической высоте δ h = - γ ж i x /γV

Плотности воды и жидкого груза относительно стабильны, то есть основное влияние на поправку оказывает форма свободной поверхности, точнее ее момент инерции. А значит, на поперечную остойчивость в основном влияет ширина, а на продольную длина свободной поверхности.

Физический смысл отрицательного значения поправки в том, что наличие свободных поверхностей всегда уменьшает

В отличие от статического, динамическое воздействие сил и моментов сообщает судну значительные угловые скорости и ускорения. Поэтому их влияние рассматривается в энергиях , точнее в виде работы сил и моментов, а не в самих усилиях. При этом используется теорема кинетической энергии , согласно которой приращение кинетической энергии наклонения судна равно работе действующих на него сил.

Когда к судну прикладывается кренящий момент m кр , постоянный по величине, оно получает положительное ускорение, с которым начинает крениться. По мере наклонения возрастает восстанавливающий момент, но вначале, до угла θ cт , при котором m кр = m θ , он будет меньше кренящего. По достижении угла статического равновесия θ cт , кинетическая энергия вращательного движения будет максимальной. Поэтому судно не останется в положении равновесия, а за счет кинетической энергии будет крениться дальше, но замедленно, поскольку восстанавливающий момент больше кренящего. Накопленная ранее кинетическая энергия погашается избыточной работой восстанавливающего момента. Как только величина этой работы будет достаточной для полного погашения кинетической энергии, угловая скорость станет равной нулю и судно перестанет крениться.

Наибольший угол наклонения, которое получает судно от динамического момента, называется динамическим углом крена θ дин . В отличие от него угол крена, с которым судно будет плавать под действием того же момента (по условию m кр = m θ ), называется статическим углом крена θ ст .

Если обратиться к диаграмме статической остойчивости, работа выражается площадью под кривой восстанавливающего момента m в . Соответственно, динамический угол крена θ дин можно определить из равенства площадей OAB и BCD , соответствующих избыточной работе восстанавливающего момента. Аналитически та же работа вычисляется как:

,

на интервале от 0 до θ дин .

Достигнув динамического угла крена θ дин , судно не приходит в равновесие, а под действием избыточного восстанавливающего момента начинает ускоренно спрямляться. При отсутствии сопротивления воды судно вошло бы в незатухающие колебания около положения равновесия при крене θ ст Морской словарь - Рефрижераторное судно Ivory Tirupati начальная остойчивость отрицательна Остойчивость способность плавучего средства противостоять внешним силам, вызывающим его крен или дифферент и возвращаться в состояние равновесия по окончании возмущающего… … Википедия

Судно, корпус которого при движении поднимается над водой под действием подъёмной силы, создаваемой погруженными в воду крыльями. Патент на С. на п. к. выдан в России в 1891, однако применяться эти суда стали со 2 й половины 20 в.… … Большая советская энциклопедия

Машина повышенной проходимости, способная двигаться как по суше, так и по воде. Автомобиль амфибия имеет увеличенный объём герметизированного кузова, который иногда для лучшей плавучести дополняется навесными поплавками. Передвижение по воде… … Энциклопедия техники

- (малайск.) тип парусного судна, поперечная остойчивость к рого обеспечивается аутригером поплавком, прикрепл. к осн. корпусу поперечными балками. Судно подобно парусному катамарану. В древности П. служили средством сообщения на о вах Тихого… … Большой энциклопедический политехнический словарь

амфибия Энциклопедия «Авиация»

амфибия - (от греч. amphíbios — ведущий двойной образ жизни) — гидросамолёт, оборудованный сухопутным шасси и способный базироваться как на водной поверхности, так и на сухопутных аэродромах. Наиболее распространены А. лодки. Взлёт с воды,… … Энциклопедия «Авиация»

Остойчивость (stability) — одно из важнейших мореходных качеств судна, с которым связаны чрезвычайно важные вопросы, касающиеся безопасности плавания. Утрата остойчивости почти всегда означает гибель судна и очень часто экипажа. В отличие от изменения других мореходных качеств уменьшение остойчивости не проявляется видимым образом, и экипаж судна, как правило, не подозревает о грозящей опасности до последних секунд перед опрокидыванием. Поэтому изучению этого раздела теории корабля необходимо уделять самое большое внимание.

Для того чтобы судно плавало в заданном равновесном положении относи­тельно поверхности воды, оно должно не только удовлетворять условиям рав­новесия, но и быть способным сопротивляться внешним силам, стремящимся вывести его из равновесного положения, а после прекращения действия этих сил — возвращаться в первоначальное положение. Следовательно, равновесие судна должно быть устойчивым или, другими словами, судно должно обладать положительной остойчивостью.

Таким образом, остойчивость — это способность судна, выведенного из состояния равновесия внешними силами, вновь возвращаться к первоначальному положению равновесия после прекращения действия этих сил.

Остойчивость судна связана с его равновесием, которое служит ха­рактеристикой последней. Если равновесие судна устойчивое, то судно обладает положительной остойчивостью; если его равновесие безразличное, то судно обладает нулевой остойчивостью, и, наконец, если равновесие судна неустойчивое, то оно обладает отрицательной остойчивостью.

Танкер Капитан Ширяев

В этой главе будут рассматриваться поперечные наклонения судна в плоскости мидель-шпангоута.

Остойчивость при поперечных наклонениях, т. е. при возникновении крена, называется поперечной. В зависимости от угла наклонения судна поперечная остойчивость делится на остойчивость при малых углах наклонения (до 10-15 град), или так называемую начальную остойчивость, и остойчивость при больших углах наклонения.

Наклонения судна происходят под действием пары сил; момент этой пары сил, вызывающий поворот судна вокруг продольной оси, будем называть кренящим Мкр.

Если Мкр, приложенный к судну, нарастает постепенно от нуля до конечного значения и не вызывает угловых ускорений, а следовательно, и сил инерции, то остойчивость при таком наклонении называется статической.

Кренящий момент, действующий на судно мгновенно, приводит к воз­никновению углового ускорения и инерционных сил. Остойчивость, проявля­ющаяся при таком наклонении, называется динамической.

Статическая остойчивость характеризуется возникновением восста­навливающего момента, который стремится возвратить судно в первоначальное положение равновесия. Динамическая остойчивость характеризуется работой этого момента от начала и до конца его действия.

Рассмотрим равнообъемное поперечное наклонение судна. Будем считать, что в исходном положении судно имеет прямую посадку. В этом случае сила поддержания D’ действует в ДП и приложена в точке С — центре величины судна (Centre of buoyancy-В).

Рис. 1

Допустим, что судно под действием кренящего момента получило поперечное наклонение на малый угол θ. Тогда центр величины переместится из точки С в точку С 1 и сила поддержания, перпендикулярная новой действующей ватерлинии В 1 Л 1 , будет направлена под углом θ к диаметральной плоскости. Линии действия первоначального и нового направлении силы поддержания пересекутся в точке m. Эта точка пересечения линии действия силы поддержания при бесконечно малом равнообъемном наклонении плавающего судна называется поперечным мета центром (metacentre).

Можно дать другое определение метацентру: центр кривизны кривой перемещения центра величины в поперечной плоскости называется поперечным мета центром.

Радиус кривизны кривой перемещения центра величины в поперечной плоскости называется поперечным мета центрическим радиусом (или малым метацентрическим радиусом) (Radius of metacentre). Он опреде­ляется расстоянием от поперечного метацентра m до центра величины С и обозначается буквой r.

Поперечный метацентрический радиус может быть вычислен с помощью формулы:

т. е. поперечный метацентрический радиус равен моменту инерции Ix площади ватерлинии относительно продольной оси, проходящей через центр тяжести этой площади, деленному на соответствующее этой ватерлинии объёмное водоизмещение V.

Условия остойчивости

Допустим, что судно, находящееся в прямом положении равновесия и плавающее по ватерлинию ВЛ, в результате действия внешнего кренящего момента Мкр накренилось так, что исходная ватерлиния ВЛ с новой действующей ватерлинией В 1 Л 1 образует малый угол θ. Вследствие изменения формы погруженной в воду части корпуса распределение гидростатических сил давления, действующих на эту часть корпуса, также изменится. Центр величины судна переместится в сторону крена и перейдет из точки С в точку С 1 .

Сила поддержания D’, оставаясь неизменной, будет направлена вертикально вверх перпендикулярно новой действующей ватерлинии, а ее линия действия пересечет ДП в первоначальном поперечном метацентре m.

Положение центра тяжести судна остается неизменным, а сила веса Р будет перпендикулярна новой ватерлинии В 1 Л 1 . Таким образом, силы Р и D’, параллельные друг другу, не лежат на одной вертикали и, следовательно, образуют пару сил с плечом GK, где точка К — основание перпендикуляра, опущенного из точки G на направление действия силы поддержания.

Пара сил, образованная весом судна и силой поддержания, стремящаяся возвратить судно в первоначальное положение равновесия, называется восстанавливающей парой, а момент этой пары — восстанавливающим моментом Мθ.

Вопрос об остойчивости накрененного судна решается направлением действия восстанавливающего момента. Если восстанавливающий момент стремится вернуть судно в первоначальное положение равновесия, то восстанавливающий момент положителен, остойчивость судна также поло­жительна — судно остойчиво. На рис. 2 показано расположение сил, действующих на судно, которое соответствует положительному восста­навливающему моменту. Нетрудно убедиться, что такой момент возникает, если ЦТ лежит ниже метацентра.

Рис. 2 Рис. 3

На рис. 3 показан противоположный случай, когда восстанавливающий момент отрицателен (ЦТ лежит выше метацентра). Он стремится еще больше отклонить судно из положения равновесия, т. к. направление его действия совпадает с направлением действия внешнего кренящего момента Мкр. В этом случае судно не остойчиво.

Теоретически можно допустить, что восстанавливающий момент при наклонении судна равен нулю, т. е. сила веса судна и сила поддержания располагаются на одной вертикали, как это показано на рис. 4.

Рис. 4

Отсутствие восстанавливающего момента приводит к тому, что после прекращения действия кренящего момента судно остается в наклоненном положении, т. е. судно находится в безразличном равновесии.

Таким образом, по взаимному положению поперечного метацентра m и Ц.Т. G можно судить о знаке восстанавливающего момента или, иными словами, об остойчивости судна. Так, если поперечный метацентр находится выше центра тяжести (рис. 2), то судно остойчиво.

Если поперечный метацентр расположен ниже центра тяжести или совпадает с ним (рис. 3, 4) судно не остойчиво.

Отсюда возникает понятие мета центрической высоты (Metacentric height): поперечной метацентрической высотой называется возвышение поперечного метацентра над центром тяжести судна в начальном положении равновесия.

Поперечная метацентрическая высота (рис. 2) определяется расстоянием от центра тяжести (т. G), до поперечного метацентра (т. m), т. е. отрезком mG. Этот отрезок является постоянной величиной, т. к. и Ц.Т. , и поперечный метацентр не изменяют своего положения при малых наклонениях. В связи с этим его удобно принимать в качестве критерия начальной остойчивости судна.

Если поперечный метацентр будет находиться выше центра тяжести судна, то поперечная метацентрическая высота считается положительной. Тогда условие остойчивости судна можно дать в следующей формулировке: судно остойчиво, если его поперечная метацентрическая высота положительна. Такое определение удобно тем, что оно позволяет судить об остойчивости судна, не рассматривая его наклонения, т. е. при угле крена равном нулю, когда восстанавливающий момент вообще отсутствует. Чтобы установить, какими данными необходимо располагать для получения значения поперечной метацентрической высоты, обратимся к рис. 5, на котором показано относительное расположение центра величины С, центра тяжести G и попе­речного метацентра m судна, имеющего положительную начальную поперечную остойчивость.

Рис. 5

Из рисунка видно, что поперечная метацентрическая высота h может быть определена по одной из следующих формул:

h = Z C ± r – Z G ;

h = Z m – Z G .

Поперечная метацентрическая высота определяется зачастую с помощью последнего равенства. Аппликата поперечного метацентра Zm может быть найдена по метацентрической диаграмме. Основные трудности при определении поперечной метацентрической высоты судна возникают при определении аппликаты центра тяжести ZG, определение которой производится с использованием сводной таблицы нагрузки масс судна (вопрос рассматривался в лекции — ).

В иностранной литературе обозначение соответствующих точек и параметров остойчивости может выглядеть так, как указано ниже на рис. 6.

Рис. 6
  • где К – точка киля;
  • В – центр величины (Centre of buoyancy);
  • G — центр тяжести (Centre of gravity);
  • М – поперечный метацентр (metacentre);
  • КВ – аппликата центра величины;
  • KG – аппликата центра тяжести;
  • КМ — аппликата поперечного метацентра;
  • ВМ – поперечный метацентрический радиус (Radius of metacentre);
  • BG – возвышение центра тяжести над центром величины;
  • GM – поперечная метацентрическая высота (Metacentric height).

Плечо статической остойчивости, обозначаемое в на шей литературе как GK, в иностранной литературе обозначается – GZ.

Предлагается к прочтению: